
Permutation-Invariant Representation of Neural
Networks with Neuron Embeddings

Ryan Zhou[0000−0002−2192−2667], Christian Muise[0000−0002−2728−6585], and Ting
Hu[0000−0001−6382−0602]

Queen’s University, Kingston, Ontario, Canada K7L 2N8
{20rz11,christian.muise,ting.hu}@queensu.ca

Abstract. Neural networks are traditionally represented in terms of
their weights. A key property of this representation is that there are
multiple representations of a network which can be obtained by permut-
ing the order of the neurons. These representations are generally not
compatible between networks, making recombination a challenge for two
arbitrary neural networks - an issue known as the “permutation problem”
in neuroevolution. This paper proposes an indirect encoding in which a
neural network is represented in terms of interactions between neurons
rather than explicit weights, and which works for both fully connected
and convolutional networks. In addition to reducing the number of free
parameters, this encoding is agnostic to the ordering of neurons, bypass-
ing a key problem for direct weight-based representation. This allows us
to transplant individual neurons and layers into another network without
accounting for the specific ordering of neurons. We show through experi-
ments on the MNIST and CIFAR-10 datasets that this method is capable
of representing networks which achieve comparable performance to direct
weight representation, and that combining networks this way preserves
a larger degree of performance than through direct weight transfer.

Keywords: Neuroevolution · Indirect Encoding · Neural Networks ·
Convolutional Neural Networks · Crossover · Permutation Invariance

1 Introduction

One of the main challenges in neuroevolution is developing an effective crossover
operation. This is in large part due to what is known as the competing con-
ventions or permutation problem [37]: given any particular neural network, an
equivalent network can be obtained by permuting the order of the neurons along
with the corresponding weights. In other words, functionally identical networks -
that is, networks with the same computation graph - can have different represen-
tations simply because the units comprising them are defined in a different order.
This implies two things: that the representation contains unnecessary informa-
tion about the ordering of neurons, and that the internal representations for two
networks are overwhelmingly likely to be incompatible. Crossover between in-
compatible representations will generally be destructive to learned relationships.



2 R. Zhou et al.

x0 x1 . . . xn(0)

h
(1)
0 h

(1)
1

. . . h
(1)

n(1)

h
(2)
0 h

(2)
1

. . . h
(2)

n(2)

Network

...

Explicit representation

...

W (1)

n(0) × n(1)

W (2)

n(1) × n(2)

Permutation invariant
(implicit) representation

...

z
(0)
0

z
(1)
0

z
(2)
0

z
(0)
1

z
(1)
1

z
(2)
1

z
(0)

n(0)

z
(1)

n(1)

z
(2)

n(2)

. . .

. . .

. . .

Fig. 1. A neural network (left) with n(i) hidden units per layer is traditionally repre-
sented by explicitly specifying the weights of the connections, usually as a matrix or
tensor W (i) of dimension n(i−1) × n(i) (middle). We propose instead to view the net-

work as sets of neurons (right), with a neuron j in layer i represented as a vector z
(i)
j .

Weights are generated implicitly by calculating alignment coefficients between neurons.
This representation is parameter efficient and there is no explicit ordering within each
layer, rendering it permutation invariant.

Representing the network in a way that is agnostic to the neuron order, i.e,
is permutation invariant with respect to the neurons, can reduce this problem
of incompatible representations. In this paper, we propose neuron embeddings,
an indirect encoding method for representing a neural network which views the
network as unordered sets of neurons rather than ordered lists of weights (Figure
1). This builds permutation invariance directly into the representation. The key
to our approach is that the weights are not fixed, but are generated dynami-
cally by individual neurons based on the other neurons present in the network.
This allows neurons not only to be reordered but also moved between models
in crossover operations. A neuron that is moved will adapt its weights to the
new population it finds itself in. In addition, because direct weight representa-
tion implicitly contains information about neuron order, a permutation invariant
indirect representation can be made smaller and more parameter efficient.

Our experiments with the proposed representation show that crossover using
neuron embeddings significantly improves the performance of the resulting net-
work compared to the same operation done using direct representation. We also
propose and demonstrate a method by which this can be extended to convolu-
tional neural networks, allowing the network to be permutation invariant with
respect to the ordering of convolutional filters.

In the following section, Section 2, we will present some context and mo-
tivation and contrast our approach with existing ones. In Section 3, we intro-
duce the proposed concept of neuron embeddings, self-contained representations
of individual neurons, and the corresponding representation of the network as



Permutation-Invariant Representation of Neural Networks 3

unordered sets of these embeddings. In Section 4 we present our experiments
and results. We find that neuron embedding representation achieves compara-
ble network performance to direct representation in fewer parameters, and that
crossover with embeddings preserves a larger degree of functionality than with
direct representation. We provide some concluding remarks in Section 5.

2 Related Work

Neuroevolution and Indirect Encoding Neuroevolution is the application of evo-
lutionary methods to neural networks. A key component of many evolutionary
algorithms is recombination, but applying it to neural networks has been chal-
lenging because of the permutation problem. Addressing it has been a central
focus of neuroevolution work [35]. Previous methods have approached this by
looking for analogous structures in the network to limit the impact of permu-
tation [37], or by sorting the neurons based on their connections [5]. However,
these methods do not scale to the sizes of networks in modern deep learning. We
propose that a more efficient solution is to build permutation invariance into the
representation, thereby avoiding the problem.

A second challenge for large-scale neuroevolution is the large number of
weights in a neural network, leading to impractically large genomes if direct
encoding is used - that is, if each weight is coded for individually in the genome.
Indirect encoding is an alternative approach which represents the network us-
ing a small number of parameters and uses rules to generate the weights [31,38].
This concept has proved successful at allowing larger networks to be trained with
evolution [14,21,36]. Modern neural network architectures can also be viewed in
this light; notably, convolution [11,23] and attention [42] generate large numbers
of effective weights from small numbers of explicit parameters. We use indirect
encoding in our method, generating weights based on a small number of vector
representations.

Permutation Invariance in Neural Networks Permutation invariance refers to
the property that a function remains unchanged even when some aspect of it is
permuted. Previous work has been done on introducing various forms of permu-
tation invariance (PI) to neural networks, primarily focused on allowing neural
networks to exhibit permutation invariance over the inputs. [9] and [45] introduce
methods which use pooling operations to perform permutation-invariant opera-
tions for set inputs. [2] introduce permutation invariance into the features them-
selves by recombining pairs of features. Set Transformer [25] builds upon these
by using self-attention to capture higher order interactions. Sensory neurons [39]
use similar modular units to produce a PI policy. These methods address per-
mutation invariance in the inputs rather than the network representation itself.
We draw on these ideas in order to do the opposite - to represent an arbitrary
neural network (which may or may not be permutation invariant with respect
to the inputs) in a manner that is PI to shuffling of the neurons.



4 R. Zhou et al.

Neuron-based Representation Neuron-based representations have also previously
been employed in the literature, often in the context of evolving individual neu-
rons [12, 26, 32] or compact representations of networks [8, 10, 17, 30]. Our work
makes use of neuron-based representation to achieve permutation invariance,
but is aimed at bridging the gap between these two applications. Our aim is not
to train individual neurons in a population-based manner but instead to repre-
sent entire pretrained networks and discover structures which can be transferred
between networks. Compared to previous work on full network representations,
our approach not only represents single networks but also aims to improve cross-
model compatibility between multiple networks by reducing networks down to
transferable units. As such, the approach we propose is designed to make the
individual neuron representations as self-contained as possible, without any in-
teraction with network-specific structures such as hypernetworks.

Attention Attention [42] is a highly successful mechanism which underpins many
modern deep neural networks. The key strength of attention is its ability to gen-
erate a large number of attention scores using only a small number of parameters,
and to do so dynamically, which can be seen as form of indirect encoding [40].
In addition, it does so in a permutation-invariant way, by only depending on the
features of the two endpoints. Because of this key property, we base our model on
the attention kernel with appropriate modifications. Attention as used in mod-
els such as Transformers [42] operates between the tokens given as inputs to the
network; our method differs in that we use as endpoints the neurons themselves,
generating a set of weights which are agnostic to the input.

Model Compression and Tensor Decomposition Neural network compression
refers to the general goal of reducing the size of a model in order to reduce
the amount of storage or computation required without significantly impacting
performance. One method of achieving this is through tensor decomposition. Be-
cause weights in neural networks may be represented with tensors, it is possible
to express the full tensor as a product or sum of lower-rank or smaller tensors.
Several methods for providing exact or approximate decompositions exist [1,20];
commonly used methods include CP [18], Tucker [41] and tensor train [27] de-
composition. The method we describe in this paper can be viewed as a low-rank
decomposition of the weight tensors, similar to the methods described in [16]
and [44]. That is, for a weight matrix W ∈ Rm×n with rank r, we approximate
W with the product W = XY with X ∈ Rm×r and Y ∈ Rr×n. This reduces
the number of parameters from mn to r(m+n) [6]. There are two major points of
contrast between our method and other tensor decompositions: first, our primary
goal is to generate self-contained representations of neurons and so the embed-
ding for each neuron is used twice - once to determine the incoming weights, and
once to determine the outgoing weights. For this reason, our method imposes
a symmetry constraint such that the two embeddings are identical in order to
produce a single representation of the “role” of a neuron. Second, our method is
only a decomposition in the case of the linear dot-product kernel; other attention
kernels allow it to represent a broader class of functions.



Permutation-Invariant Representation of Neural Networks 5

3 Method

We will first describe how our method works for a simple feedforward network.
Then, we will describe how convolutional neural networks can be represented as
well. In short, we replace all weights in the network with a set of vector repre-
sentations of the neurons present in the network. Weights are then generated in
an attention-like way, with some modifications.

It is important that each neuron’s representation contains all the information
necessary to perform its function so that it can be moved between networks -
thus, there is no equivalent to the query, key and value networks of attention
which would need to be external to the neuron. This ensures a neuron’s rep-
resentation is fully self-contained, allowing it to be transplanted into a second
neural network and generate new weights without requiring information from
the original neural network.

Neuron Embedding The core idea of our method is to introduce a learnable
vector embedding z for each neuron (Figure 1). This is simply a d-dimensional
vector which represents the role of the neuron and can be trained via gradient
descent. This is used to generate weight scores between it and all neurons in the
previous layer using a kernel K(·, ·). We calculate the alignment score αij in a
manner similar to attention by using a dot product kernel, and assign this score

as the weight. That is, we take the dot product between the embedding z
(l)
i of

neuron i in layer l and the embedding z
(l+1)
j of neuron j in layer l+ 1 [42] with

an optional nonlinearity σ:

αij = K(z
(l)
i , z

(l+1)
j ) = σ(z

(l)
i z

(l+1)
j

⊤
) (1)

This is done efficiently as a matrix operation by packing the embeddings for
both layers into the matrices Z(l) ∈ Rnl×d and Z(l+1) ∈ Rnl+1×d, where ni is
the number of hidden units in the layer i. The activation vector h(l) of layer l
takes the place of the value function, giving us:

Attention(Z(l),Z(l+1),h(l)) = σ(Z(l)Z(l+1)⊤)h(l) (2)

This can be implemented simply by assigning the matrix of attention scores
to be the weight matrix W (l). Note that unlike the Transformer formulation
of attention, we use the unscaled dot product here. Scaling the dot product by
1√
d
corrects the variance of the product to be 1 when the input embeddings

have variance 1; however, we find in practice it is more effective to scale the
initialization of the embeddings. Each component of the embedding is initialized
to be normally distributed with standard deviation 1√

d
or equivalently variance

1
d , where d is the dimensionality of the embedding:

zi ∼ N(0,
1

d
) (3)

This ensures the magnitude of the embedding vectors has a mean of 1, re-
moving the need for scaling.



6 R. Zhou et al.

Bias In addition to the embedding, each neuron contains a learnable bias b in
order to match the overall function of a feedforward network. This bias has the
same role as the bias in a feedforward layer, and is added after the weights are
applied. Since each bias is specific to a single neuron, it can be considered part
of the self-contained representation and moved to a different network.

Input Encoding To generate the weights for the first layer, it is necessary to pro-
vide an embedding for each input to the network, which can be learned from the
data [7]. A second possibility is to provide predefined embeddings; for example,
through positional encodings [42]. We tested sinusoidal positional embeddings
for one and two dimensions [42,43] as well as localized wavelets, but found that
in practice, these fixed embeddings performed poorly. We allow a model to learn
the input embeddings from the dataset, which can then be shared with subse-
quent models trained on the same dataset. This is important for cross-model
transfer, as it provides the two models a common basis from which to work.

Input tensor

standard
convolution

pointwise
convolution depthwise

convolution

neuron
embedding depthwise

convolution

Standard convolution

Reversed depthwise
separable convolution

Neuron embedding
convolution

Fig. 2. Representation of a convolutional neuron. The standard representation explic-
itly specifies all the weights in the kernel. Depthwise separable convolutions provide an
approximate replacement by splitting the kernel into a pointwise convolution, which
mixes information across channels, and a depthwise convolution which applies one
spatial kernel per channel. We replace the pointwise convolution with an implicit rep-
resentation using neuron embeddings but keep the depthwise convolution, rendering
the network permutation invariant to the ordering of filters but preserving spatial
structure. Each neuron embedding and depthwise convolution pair represents a single
output filter.

Encoding Convolutional Networks Convolutional neural networks present a unique
challenge. For a k × k filter with n(i) input channels, we have k2 · n(i) incoming
weights. However, we only have n(i) embeddings in the layer below. In addition,
we would like to do this in a way that can be encapsulated as a single neuron,
allowing it to operate in a self-contained manner.



Permutation-Invariant Representation of Neural Networks 7

Our solution (Figure 2) is to employ reversed order depthwise separable con-
volutions [3]. The standard order is to apply the n(i) depthwise convolutions
first, followed by the pointwise convolution to expand the number of channels
from n(i) to n(i+1). However, in order to produce self-contained representations,
we would like to treat each pointwise-depthwise pair as a single neuron; for this,
we need n(i+1) depthwise kernels. Thus, we reverse the order of operations, per-
forming the pointwise convolution first to produce n(i+1) different channels in the
output, and then assign each channel its own depthwise convolution. Since the
pointwise convolution can be seen as a feedforward network along the channel
dimension, we can represent this using neuron embeddings, with one embedding
per output channel. Performing the steps in reverse order is also known as a
blueprint separable convolution and exhibits improved training properties [13].

4 Experiments

We now present a series of experiments designed to test the ability of our method
to represent equivalent networks to direct weight encoding, and to evaluate
its ability to preserve performance under crossover. We use the MNIST [24]
and CIFAR-10 [22] datasets to evaluate the models. All models were imple-
mented in Python using the PyTorch library [29], and the code can be found
on GitHub at https://github.com/ryanz8/neuron-embedding. Experiments
were performed on a single computer with an NVIDIA RTX3090 GPU.

Hyperparameter Optimization Hyperparameters for the direct weight represen-
tation models were manually tuned following empirical guidelines [28, 33] with
a small random search over learning rate and weight decay. As the focus of this
paper is on the relative efficacy of the representation methods rather than overall
performance, we did not perform heavy hyperparameter optimization. Rather,
we attempt to showcase the models under similar starting conditions. As such,
the hyperparameters of the neuron embedding representations were matched to
those of the direct representations. This should favor the direct representation
slightly; however, there is the possibility that the results will differ or the per-
formance gap will be greater under different hyperparameters.

4.1 Training from Random Initialization

Our first experiment tests the ability of our method to achieve comparable perfor-
mance to weight encoding when trained from random initialization. The intent
is to test whether neuron embeddings can be trained the same way as direct
weight representations without any special tuning. We compared two types of
architectures: fully connected and convolutional, each using direct weight repre-
sentation, against equivalents using neuron embedding representation. We chose
training settings which yielded high performance after a short amount of train-
ing for the direct weight representations, and used the same settings without
modification for the neuron embedding representations.



8 R. Zhou et al.

Dataset Model Parameters Layers Acc. (%) CE Loss

MNIST FC (direct) 318010 2 fc 98.05 0.0672
MNIST FC (emb.) 76416 2 fc 97.43 0.0999
MNIST FC (direct) 417640 5 fc 98.14 0.0710
MNIST FC (emb.) 97536 5 fc 97.44 0.1077
MNIST Conv. (direct) 160070 3 conv 2 fc 99.38 0.0294
MNIST Conv. (sep.) 84750 3 conv 2 fc 99.27 0.03732
MNIST Conv. (emb.) 51598 3 conv 2 fc 99.00 0.0412

CIFAR-10 ResNet9 (direct) 2438794 8 conv 1 fc 89.40 0.3962
CIFAR-10 ResNet9 (sep.) 287818 8 conv 1 fc 88.21 0.4312
CIFAR-10 ResNet9 (emb.) 98298 8 conv 1 fc 86.90 0.4469

Table 1. Performance when trained from random initialization for fully connected
(FC) models and convolutional (conv) models. “Direct” models use direct (explicit)
weight representation. “Sep.” models use reverse order depthwise separable convolu-
tions (blueprint separable convolutions). “Emb.” models (ours, bolded) use neuron
embedding representation.

All models unless otherwise specified were trained with cross-entropy loss [19],
using the Adam optimizer on MNIST and SGD with momentum on CIFAR-
10. Network widths are noted in brackets, with convolutional layers denoted
with a superscript c. We test a 2-layer (400,10) and 5-layer (400,400,400,400,10)
feedforward network and a 5-layer convolutional network (16c,40c,1000,100,10)
on MNIST, and a 9-layer ResNet (64c,128c,128c,128c,256c,256c,256c,256c,10) [15]
on CIFAR-10 designed based on the results of the DAWNBench benchmark
[4,28]. For models using neuron embedding, we set the nonlinearity σ to be the
identity for faster training. All models use ReLU activation for all layers except
the output. Comparison was done using the best model found after 2000 steps of
training as determined by cross-validation on a holdout set of 10000 data points.
With Adam, we use a one-cycle learning rate schedule [34] and cosine annealing,
with a learning rate of 0.01 and batch size of 1000 which has been shown to
work well in combination with this schedule [33]. For stochastic gradient descent,
we use linear annealing with a maximum learning rate of 2× 10−4 obtained by
hyperparameter search and a batch size of 512. The dimensionality of the neuron
embeddings is set to 64 for fully connected models and 48 for convolutional
models.

The results in Table 1 show that representation using neuron embeddings is
able to achieve comparable performance to direct weight representation, when
using standard training settings without modification. The slight difference in
performance we attribute to the use of training settings optimized for direct
weight representation; as we will show next, it is not due to the smaller number
of parameters leading to a gap in expressiveness for this problem. We note that
training time is also not impacted, and in some cases is actually reduced which
we attribute to the smaller number of parameters.



Permutation-Invariant Representation of Neural Networks 9

Model Free Parameters Accuracy (%) MSE

Reference 318010 97.48 -
Neuron embedding (64 dims) 76416 97.48 0.00036
Neuron embedding (32 dims) 38208 97.15 0.00053
Neuron embedding (16 dims) 19104 75.08 0.00095
Neuron embedding (8 dims) 9552 65.61 0.00177
Neuron embedding (4 dims) 4776 20.72 0.00414

Table 2. Results for training to a 2-layer reference network. An embedding dimension
of 64 is sufficient to match the performance of this network within margin of error,
while decreasing the embedding dimension degrades the performance. MSE refers to
the mean squared deviation of the weights in the neuron embedding representation
from the weights in the reference network. The mean-squared amplitude of the weights
in the reference network is 0.0152.

4.2 Compression Ability

Our next experiment tests the ability of neuron embeddings to exactly reproduce
the weights of a reference fully connected network. This tests the expressiveness
of the neuron embeddings. We expect that if the network is able to reproduce the
weights, then performance should match that of the reference network. We tested
different values for d, the embedding dimension to show the effect of embedding
expressiveness on the final accuracy.

To force the embeddings to replicate the weights, we train the embeddings by
minimizing the mean squared loss over all the generated weights when compared
to the reference network. This was chosen as it corresponds to minimizing the
quantity

N∑
i=1

1

mini
∥Wi − Zi−1Z

T
i ∥2F . (4)

That is, it approximates the full-rank decomposition of the weight matrices
normalized by the number of elements. Here Wi is the weight matrix for layer
i, mi and ni are the dimensions of Wi, Zi−1 and Zi are the neuron embeddings
for the layers i− 1 and i, and ∥ · ∥F is the Frobenius norm. Models were trained
using the Adam optimizer with a learning rate of 0.002 for 2000 steps.

Results are shown in Table 2. As can be seen, with sufficient d models are
able to almost exactly match the performance of a directly encoded network.
Insufficient expressiveness as a result of a too small d harms the performance
of the network, but even with only 8 dimensions a significant fraction of the
knowledge was still represented (with an accuracy of 65% versus the 10% of
random chance). In all cases, the number of parameters of the neuron embedding
model was smaller than that of the fully connected reference network, despite
being able to match the weights.



10 R. Zhou et al.

4.3 Cross-Model Compatibility

Our next experiment tests whether neuron-based representations enable better
compatibility between different models. Our goal is to determine the degree to
which the function of a neuron is preserved when moved to a different setting.
This evaluates the potential of this representation for crossover operations and
cross-model transfer learning.

We trained two models from random initialization, producing two different
networks to act as a source network and a target network. We then trained
two neuron embedding models to replicate the weights of each direct encoding
parent. We use the same learned input encodings for both neuron embedding
models, done by copying the learned input encodings from the target network to
the source network before training. This did not affect the weights themselves
and it was possible to replicate both the weights of the source and target network
to high accuracy using the same embeddings for the inputs but different neuron
embeddings for all subsequent layers.

We performed this process for both fully connected and convolutional mod-
els. The fully connected models contained 8 hidden layers with 400 neurons each
and a 10 neuron output layer. The convolutional models consisted of three 3x3
reverse-order depthwise separable convolutional layers with 20, 40 and 80 neu-
rons, followed by a 100 neuron fully connected hidden layer and the 10 neuron
output layer.

Neuron transplant We tested compatibility for both pairs of models by trans-
ferring a variable number of neurons in the first hidden layer from the source
network to the target network, which we refer to as a crossover operation. If the
internal representations are compatible, we expect models to retain a greater
degree of performance under this operation. Here, a crossover coefficient of 0.8
indicates that 80% of the neurons in that layer of the target network have been
replaced and 20% of the neurons remain. A coefficient of 1.0 indicates that the
entire layer has been replaced with the layer from the source network. Neurons
are chosen in random order for this, and we repeat each experiment 10 times
and report the mean and 95% confidence interval.

The results in Figure 3 show that transplanting neurons in the hidden layer
results in minor loss of performance for both models until roughly 1/3 of the
neurons were replaced, after which performance deteriorates rapidly. When the
entire layer was transferred, performance was close to chance for the direct encod-
ing. This is as expected as the weights of the layer are adapted to their original
setting and do not store information in a form usable by the new model. How-
ever, in the case of transfer through neuron embedding, we are able to preserve
a larger fraction of the relationships even when the entire layer is transplanted
to a new network.

We stress that the direct representation and the neuron embedding represen-
tation both encode the same networks with the same weights; thus, the greater
information transfer is due entirely to the way in which the layers are encoded.



Permutation-Invariant Representation of Neural Networks 11

0.0 0.2 0.4 0.6 0.8 1.0
Crossover Coefficient

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Accuracy, neuron transplant for fully connected network

Direct Representation
Neuron Embedding

0.0 0.2 0.4 0.6 0.8 1.0
Crossover Coefficient

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy, neuron transplant for convolutional network

Direct Representation
Neuron Embedding

Fig. 3. Accuracy under neuron transplant for fully connected (top) and convolutional
(bottom) models. Bold lines show the mean over 10 runs, and the shaded region in-
dicates a 95% confidence interval for the mean. Crossover coefficient (horizontal axis)
represents the fraction of neurons in the layer replaced by neurons from another model.
We compare two identical networks encoded in two ways - direct encoding or neuron
embedding. At 100% crossover, an entire layer from the source network is directly
transplanted to the recipient network without any further training. We observe that
the same network when encoded with neuron embedding maintains significantly more
performance, and can function even when the entire layer is replaced.



12 R. Zhou et al.

Linear interpolation To investigate whether these results are an artifact of the
neuron transplant method, we perform a second experiment, but rather than
transferring single neurons we apply linear interpolation to every neuron in the
layer simultaneously. For the direct representation, we linearly interpolate be-
tween the weights of the two models, and for the embedding representation we
linearly interpolate between the corresponding embedding vectors of the neu-
ron representation. Results of this operation are shown in Figure 4. We observe
similar results to the previous experiment for the fully connected model, sug-
gesting that the representation itself is responsible for the results. However, we
note slightly worse performance by both representations on the convolutional
model. It is worth noting that the embedding vectors themselves are interpo-
lated, producing entirely new embeddings; this suggests that it is possible to
perform crossover on the neuron level, as well as on the network level.

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Coefficient

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy, linear interpolation for fully connected network
Direct Representation
Neuron Embedding

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation Coefficient

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Accuracy, linear interpolation for convolutional network

Direct Representation
Neuron Embedding

Fig. 4. Model accuracy under linear interpolation for fully connected model (left) and
convolutional model (right). The weights and embedding vectors are directly inter-
polated by taking a weighted average, and all neurons in the layer are interpolated
simultaneously. We observe similar results to the previous experiment on the fully
connected network. Note that embedding vectors themselves are being changed; this
suggests the possibility of neuron-level as well as network-level crossover.

5 Conclusion

In this paper we presented neuron embeddings, an indirect encoding method for
representing a neural network in terms of unordered sets of individual neurons.
This is a parameter-efficient representation which is also invariant to permuta-
tion of the neurons, allowing for better compatibility when performing crossover.
Our method encapsulates the role of a neuron into a single self-contained rep-
resentation which is used to generate the weights implicitly, allowing them to
be transferred into a second neural network and still preserve some degree of
function, even when the two networks are trained independently. This opens



Permutation-Invariant Representation of Neural Networks 13

the door to new possibilities for neuroevolution, as this removes one important
roadblock for crossover in neural networks, and can be used in conjunction with
other methods such as those based on neuron alignment. In addition, the self-
contained nature of the representations may prove useful for methods which
evolve individual neurons, rather than complete networks. Of interest for future
work is the extension of this method to larger hierarchical structures, which may
also enable more efficient neural architecture search.

This work also has potential applications for cross-dataset knowledge trans-
fer and transfer learning, which we intend to investigate in more depth moving
forward. For example, it may be possible to transfer knowledge from multiple
models or to improve upon existing methods of imitation learning. We also would
like to further investigate whether neuron-based representation can aid in visu-
alizing the patterns and knowledge contained in a neural network. If this is the
case, this could lead to future applications for interpretability.

References

1. Bacciu, D., Mandic, D.P.: Tensor Decompositions in Deep Learning. Computa-
tional Intelligence p. 10 (2020)

2. Chen, X., Cheng, X., Mallat, S.: Unsupervised Deep Haar Scattering on Graphs. In:
Advances in Neural Information Processing Systems. vol. 27. Curran Associates,
Inc. (2014)

3. Chollet, F.: Xception: Deep Learning with Depthwise Separable Convo-
lutions. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 1800–1807. IEEE, Honolulu, HI (Jul 2017).
https://doi.org/10.1109/CVPR.2017.195

4. Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J., Nardi, L., Bailis, P.,
Olukotun, K., Ré, C., Zaharia, M.: DAWNBench: An End-to-End Deep Learning
Benchmark and Competition. NIPS ML Systems Workshop p. 10 (2017)

5. Das, A., Hossain, M.S., Abdullah, S.M., Islam, R.U.: Permutation free encoding
technique for evolving neural networks. In: International Symposium on Neural
Networks. pp. 255–265. Springer (2008)

6. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression and hardware ac-
celeration for neural networks: A comprehensive survey. Proceedings of the IEEE
108(4), 485–532 (2020). https://doi.org/10.1109/JPROC.2020.2976475

7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapo-
lis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-1423, https://www.
aclweb.org/anthology/N19-1423

8. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with Analog Genetic En-
coding. In: Runarsson, T.P., Beyer, H.G., Burke, E., Merelo-Guervós, J.J., Whit-
ley, L.D., Yao, X. (eds.) Parallel Problem Solving from Nature - PPSN IX. pp.
671–680. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2006).
https://doi.org/10.1007/11844297 68

https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.1007/11844297_68


14 R. Zhou et al.

9. Edwards, H., Storkey, A.: Towards a Neural Statistician. 5th International Confer-
ence on Learning Representations (ICLR 2017) pp. 1–13 (2017)

10. Eliasmith, C., Anderson, C.H.: Neural Engineering: Computation, Representation,
and Dynamics in Neurobiological Systems. Computational Neuroscience Series, A
Bradford Book, Cambridge, MA, USA (Oct 2002)

11. Fukushima, K., Miyake, S.: Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition. In: Competition and cooperation in
neural nets, pp. 267–285. Springer (1982)

12. Gomez, F.J.: Robust Non-Linear Control through Neuroevolution. Ph.D. thesis,
University of Texas at Austin (Aug 2003)

13. Haase, D., Amthor, M.: Rethinking Depthwise Separable Convolutions: How Intra-
Kernel Correlations Lead to Improved MobileNets. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 14588–14597. IEEE,
Seattle, WA, USA (Jun 2020). https://doi.org/10.1109/CVPR42600.2020.01461

14. Hausknecht, M., Khandelwal, P., Miikkulainen, R., Stone, P.: Hyperneat-ggp: A
hyperneat-based atari general game player. In: Proceedings of the 14th annual
conference on Genetic and evolutionary computation. pp. 217–224 (2012)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 770–778 (Jun 2016). https://doi.org/10.1109/CVPR.2016.90

16. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up Convolutional Neural Net-
works with Low Rank Expansions. In: Proceedings of the British Machine Vision
Conference 2014. pp. 88.1–88.13. British Machine Vision Association, Nottingham
(2014). https://doi.org/10.5244/C.28.88

17. Karaletsos, T., Dayan, P., Ghahramani, Z.: Probabilistic Meta-Representations Of
Neural Networks. arXiv:1810.00555 [cs, stat] (Oct 2018)

18. Kiers, H.: Towards a Standardized Notation and Terminology in Multiway Anal-
ysis. Journal of Chemometrics - J CHEMOMETR 14, 105–122 (May 2000).
https://doi.org/10.1002/1099-128X(200005/06)14:33.0.CO;2-I

19. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015)

20. Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM Review
51(3), 455–500 (Aug 2009). https://doi.org/10.1137/07070111X

21. Koutńık, J., Cuccu, G., Schmidhuber, J., Gomez, F.: Evolving large-scale neu-
ral networks for vision-based reinforcement learning. In: Proceedings of the 15th
annual conference on Genetic and evolutionary computation. pp. 1061–1068 (2013)

22. Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images. Tech. Rep.
TR-2009 (2009)

23. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.,
Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural
computation 1(4), 541–551 (1989)

24. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)

25. Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set Transformer: A
Framework for Attention-based Permutation-Invariant Neural Networks. In: Inter-
national Conference on Machine Learning. pp. 3744–3753. PMLR (May 2019)

26. Moriarty, D.E., Mikkulainen, R.: Efficient Reinforcement Learning
through Symbiotic Evolution. Machine Learning 22(1), 11–32 (Jan 1996).
https://doi.org/10.1023/A:1018004120707

https://doi.org/10.1109/CVPR42600.2020.01461
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.5244/C.28.88
https://doi.org/10.1002/1099-128X(200005/06)14:33.0.CO;2-I
https://doi.org/10.1137/07070111X
https://doi.org/10.1023/A:1018004120707


Permutation-Invariant Representation of Neural Networks 15

27. Oseledets, I.: Tensor-Train Decomposition. SIAM J. Scientific Computing 33,
2295–2317 (Jan 2011). https://doi.org/10.1137/090752286

28. Page, D.: How to Train Your ResNet (Sep 2018)
29. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

30. Reisinger, J., Miikkulainen, R.: Acquiring evolvability through adaptive represen-
tations. In: Proceedings of the 9th Annual Conference on Genetic and Evolution-
ary Computation - GECCO ’07. p. 1045. ACM Press, London, England (2007).
https://doi.org/10.1145/1276958.1277164

31. Schmidhuber, J.: Discovering neural nets with low kolmogorov complexity and high
generalization capability. Neural Networks 10(5), 857–873 (1997)

32. Schmidhuber, J., Wierstra, D., Gagliolo, M., Gomez, F.: Training Recur-
rent Networks by Evolino. Neural Computation 19(3), 757–779 (Mar 2007).
https://doi.org/10.1162/neco.2007.19.3.757

33. Smith, L.N.: A disciplined approach to neural network hyper-parameters: Part
1–learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820 (2018)

34. Smith, L.N., Topin, N.: Super-convergence: Very fast training of neural networks
using large learning rates. In: Artificial Intelligence and Machine Learning for
Multi-Domain Operations Applications. vol. 11006, p. 1100612. International So-
ciety for Optics and Photonics (2019)

35. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks
through neuroevolution. Nature Machine Intelligence 1(1), 24–35 (2019)

36. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial life 15(2), 185–212 (2009)

37. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary computation 10(2), 99–127 (2002)

38. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial
Life 9(2), 93–130 (2003)

39. Tang, Y., Ha, D.: The Sensory Neuron as a Transformer: Permutation-Invariant
Neural Networks for Reinforcement Learning. arXiv:2109.02869 [cs] (Sep 2021)

40. Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference. pp. 414–
424 (2020)

41. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychome-
trika 31(3), 279–311 (Sep 1966). https://doi.org/10.1007/BF02289464

42. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems. pp. 6000–6010.
NIPS’17, Curran Associates Inc., Red Hook, NY, USA (Dec 2017)

43. Wang, Z., Liu, J.C.: Translating math formula images to latex sequences using
deep neural networks with sequence-level training (2019)

44. Yu, X., Liu, T., Wang, X., Tao, D.: On Compressing Deep Models by Low
Rank and Sparse Decomposition. In: 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 67–76. IEEE, Honolulu, HI (Jul 2017).
https://doi.org/10.1109/CVPR.2017.15

45. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep Sets. In: Advances in Neural Information Processing Systems. vol. 30.
Curran Associates, Inc. (2017)

https://doi.org/10.1137/090752286
https://doi.org/10.1145/1276958.1277164
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/10.1007/BF02289464
https://doi.org/10.1109/CVPR.2017.15

	Permutation-Invariant Representation of Neural Networks with Neuron Embeddings

